㈠ 基于python的scrapy爬虫,关于增量爬取是怎么处理的
我也遇到了这个问题,我的解决方法是,先将列表按照时间排序后再抓取,每次抓取完记录最后一条的url,下载再抓取时,遇到这个url,抓取就自动退出。
如果解决了您的问题请采纳!
如果未解决请继续追问!
㈡ 怎样使用scrapy爬取js动态生成的数据
解决方案:
利用第三方中间件来提供JS渲染服务: scrapy-splash 等。
利用webkit或者基于webkit库
Splash是一个Javascript渲染服务。它是一个实现了HTTP API的轻量级浏览器,Splash是用Python实现的,同时使用Twisted和QT。Twisted(QT)用来让服务具有异步处理能力,以发挥webkit的并发能力。
下面就来讲一下如何使用scrapy-splash:
利用pip安装scrapy-splash库:
$ pip install scrapy-splash
scrapy-splash使用的是Splash HTTP API, 所以需要一个splash instance,一般采用docker运行splash,所以需要安装docker。
安装docker, 安装好后运行docker。
拉取镜像(pull the image):
$ docker pull scrapinghub/splash
用docker运行scrapinghub/splash:
$ docker run -p 8050:8050 scrapinghub/splash
配置splash服务(以下操作全部在settings.py):
1)添加splash服务器地址:
SPLASH_URL = 'http //localhost:8050'
2)将splash middleware添加到DOWNLOADER_MIDDLEWARE中:
DOWNLOADER_MIDDLEWARES = {
'scrapy_splash.SplashCookiesMiddleware': 723,
'scrapy_splash.SplashMiddleware': 725,
'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810,
}
3)Enable SplashDeplicateArgsMiddleware:
SPIDER_MIDDLEWARES = {
'scrapy_splash.SplashDeplicateArgsMiddleware': 100,
}
4)Set a custom DUPEFILTER_CLASS:
DUPEFILTER_CLASS = 'scrapy_splash.SplashAwareDupeFilter'
5)a custom cache storage backend:
HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage'
例子
获取HTML内容:
import scrapy
from scrapy_splash import SplashRequest
class MySpider(scrapy.Spider):
start_urls = ["http //example com", "http //example com/foo"]
def start_requests(self):
for url in self.start_urls:
yield SplashRequest(url, self.parse, args={'wait': 0.5})
def parse(self, response):
# response.body is a result of render.html call; it
# contains HTML processed by a browser.
# ...
㈢ 《精通 Python爬虫框架 Scrapy》txt下载在线阅读全文,求百度网盘云资源
《精通Python爬虫框架Scrapy》([美]迪米特里奥斯 考奇斯-劳卡斯)电子书网盘下载免费在线阅读
链接: https://pan..com/s/1bFpjRj24UfpnINODbkBcGA
书名:《精通Python爬虫框架Scrapy》
作者:[美]迪米特里奥斯 考奇斯-劳卡斯
译者:李斌
豆瓣评分:5.9
出版社:人民邮电出版社
出版年份:2018-2-1
页数:239
内容简介:Scrapy是使用Python开发的一个快速、高层次的屏幕抓取和Web抓取框架,用于抓Web站点并从页面中提取结构化的数据。《精通Python爬虫框架Scrapy》以Scrapy 1.0版本为基础,讲解了Scrapy的基础知识,以及如何使用Python和三方API提取、整理数据,以满足自己的需求。
本书共11章,其内容涵盖了Scrapy基础知识,理解HTML和XPath,安装Scrapy并爬取一个网站,使用爬虫填充数据库并输出到移动应用中,爬虫的强大功能,将爬虫部署到Scrapinghub云服务器,Scrapy的配置与管理,Scrapy编程,管道秘诀,理解Scrapy性能,使用Scrapyd与实时分析进行分布式爬取。本书附录还提供了各种软件的安装与故障排除等内容。
本书适合软件开发人员、数据科学家,以及对自然语言处理和机器学习感兴趣的人阅读。
作者简介:作者:[美]迪米特里奥斯 考奇斯-劳卡斯(Dimitrios Kouzis-Loukas) 译者:李斌
Dimitrios Kouzis-Loukas作为一位软件开发人员,已经拥有超过15年的经验。同时,他还使用自己掌握的知识和技能,向广大读者讲授如何编写软件。
他学习并掌握了多门学科,包括数学、物理学以及微电子学。他对这些学科的透彻理解,提高了自身的标准,而不只是“实用的解决方案”。他知道真正的解决方案应当是像物理学规律一样确定,像ECC内存一样健壮,像数学一样通用。
Dimitrios目前正在使用新的数据中心技术开发低延迟、高可用的分布式系统。他是语言无关论者,不过对Python、C++和Java略有偏好。他对开源软硬件有着坚定的信念,他希望他的贡献能够造福于各个社区和全人类。
关于译者
李斌,毕业于北京科技大学计算机科学与技术专业,获得硕士学位。曾任职于阿里巴巴,当前供职于凡普金科,负责应用安全工作。热爱Python编程和Web安全,希望以更加智能和自动化的方式提升网络安全。
㈣ 基于python的scrapy爬虫,关于增量爬取是怎么处理的
new to scrapy, 仅提供几个思路,详细解决方案,自己解决后后续跟进。
如果只是一次性的抓取某个网站的全部内容, 中途需要暂停并且恢复,只需要
scrapy crawl somespider -s JOBDIR=crawls/somespider-1参考:Jobs: pausing and resuming crawls
如果需求是过滤某些url,但是网站的主入口不被过滤掉,比如典型的论坛类网站,你只想过滤掉帖子,但是却不想过滤掉板块,你可以定制一下requestSeen
scrapy/pefilter.py at 0.24 · scrapy/scrapy · GitHub
python - how to filter plicate requests based on url in scrapy
如果使所有网站的动态过滤,比如是不是多了一个新回复,在url上的变化并不能体现出来,搜索引擎采用的是一系列的算法,判断某一个页面的更新时机。个人应用一般不会使用到(其实是自己也不懂,写出来提供一下思路,也许你会呢)。大部分的网页在进入下一级页面的时候都会有一个类似于最后更新时间,最后活动时间等等,可以根据这个来进行判断。
㈤ 基于python的scrapy爬虫,关于增量爬取是怎么处理的
一、增量爬取的思路:即保存上一次状态,本次抓取时与上次比对,如果不在上次的状态中,便视为增量,保存下来。对于scrapy来说,上一次的状态是抓取的特征数据和上次爬取的 request队列(url列表),request队列可以通过request队列可以通过scrapy.core.scheler的pending_requests成员得到,在爬虫启动时导入上次爬取的特征数据,并且用上次request队列的数据作为start url进行爬取,不在上一次状态中的数据便保存。
二、选用BloomFilter原因:对爬虫爬取数据的保存有多种形式,可以是数据库,可以是磁盘文件等,不管是数据库,还是磁盘文件,进行扫描和存储都有很大的时间和空间上的开销,为了从时间和空间上提升性能,故选用BloomFilter作为上一次爬取数据的保存。保存的特征数据可以是数据的某几项,即监控这几项数据,一旦这几项数据有变化,便视为增量持久化下来,根据增量的规则可以对保存的状态数据进行约束。比如:可以选网页更新的时间,索引次数或是网页的实际内容,cookie的更新等
㈥ python爬虫必知必会的几个工具包
爬虫是学习python有趣途径,同样有强大的框架
python自带的urllib其实使用起来有点麻烦,推荐你使用requests库,这是一个非常强大,使用方便的库,而且有全面的中文文档,网上爬数据爬图片都不在话下。
还有更高级的库-scrapy库。
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。Scrapy 使用了 Twisted异步网络库来处理网络通讯。爬取网站数据,当然少不了正则模块re,还有beautiful soup模块
re模块具有强大的处理字符串的能力,但是使用起来并不简单,因为当你觉得可以使用正则表达式的时候,这本身就是一个问题,因为写出一个正则表达式就是一个大问题。不过不用怕,在处理网站结构的数据时,有更强大的库-beautiful soup
Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库,拥有完善的中文文档,提供了种类繁多的属性和方法供你选择,让你解析网站数据更加的得心应手!
web后端框架django,flask
python在web开发方面也是多面手,既有大而全的框架django,又有小而精的框架flask。
虽说在web开发方面有许多框架,但是最常用的还是这两种,如果你想做中方面的工作,学好这两个框架就够用了,而且,目前的python后端开发的招聘需求多半是要求会这两个框架。
㈦ 请教使用 scrapy 爬取豆瓣读书的时候,无法多页面爬取的解决办法
scrapy在爬网页的时候是自动采用多线程的。 scrapy基于twisted异步IO框架,downloader是多线程的。